Our power costs are CHEAP here in the MidWest!

I just read a blog at my friend’s website (www.runonsun.com) and learned that folks in California are paying 22 Cents/Kwh for their electricity. That’s over TWICE what we pay here in the MidWest. This is very likely the reason there’s so much residential solar built up out West. Our energy prices here in Ohio, Indiana, Kentucky and Pennsylvania are all around 10 cents/Kwh, and we are blessed. But don’t think that our prices won’t go up. Coal fired plants are being closed every week because they are old, obsolete, or simply can’t meet the new EPA standards for particulate emissions. Yes, there are new gas turbine power plants being built, and yes, we are using LESS electricity (as a Country) than ever before, but this is not a balanced equation. Our prices have been held low due to coal subsidies from the government, and these will disappear with the coal plants. Solar panel pricing has bottomed out and prices are stabilizing in the 79 to 90 cents/watt range. We might squeeze a few percent out of inverter costs, but for now, we are riding near the all time price lows for residential AND commercial solar PV systems. It might be time to plan on installing that dream system in the early Spring, before demand begins to force component pricing to rise…

Best wishes and sunny days!

Finish phase 2 expansion at East Fork Stables

Racking goes up at East Fork Stables

Cinci Home Solar works with EFS to get racking up using 50% on hand materials.

Missed this photo on the first part of this adventure. The owner had materials on hand, and made the posts of Steel L channel, the beams from Steel S-channel, and the barn support brackets from 2 inch steel L material. The owner (George) is a VERY resourceful fellow – some might call him a scrounger, but I call him SMART! I passed along a great vendor deal on the solar panels and he purchased them direct. The BOS (balance of system) materials was purchased through Cinci Home Solar at great pricing, bringing the whole project in at about $3/watt, and this includes the battery bank and backup power inverters in addition to the Enphase micro-inverters behind each panel. The work was spread over 4 full days, with the helper crew varying from 1 to 3 guys and myself. Plenty of manpower to get this rather large project done in a timely fashion. Winter is really variable in Cincinnati, and whenever the weather was predicted to be above 40 and sunny, George called and we got the job done. Fortunately, this job was a quick drive from my home, and it wasn’t a problem. Normally, these 3 or 4 days would have been all condensed into one extended visit! I aim to please, whenever possible…


DIY Solar array expansion by Cinci Home Solar

DIY Solar expansion -adding 2 more rows to bottom of 32 panel array.

After we finished the 32 panel array, George saw that some minor grading of the ground near the bottom would allow plenty of room for 2 more rows! A week later he called me and said “Hey Joe, come on out and lets get these 2 rows installed – tomorrow’s weather looks great. So we did!  When I ordered the extra components, we also added 8 more rails – one under each of the 8 columns of the upper 4 rows. You can see them mid-panel in the picture to the right. This provided the extra strength and rigidity that the span required for both wind and snow loading. Splicing the extra rails that extend to the newly installed lower beam also provided a counterbalance to the free span above.
The two missing panels at the lower left were intentionally left off because of a stone access road to the hay barn that George didn’t want to move.


DIY Solar install of Enphase M215 Micro-inverters

DIY Solar installation of Enphase M215 Micro-inverters.

This is what the backside looks like after everything is in place. After the rails were set, the Enphase M215 Micro-inverters were mounted. Then the #6 bare copper ground wire was run in series to each inverter. We grounded BOTH ends of the #6 copper, just because we could. Next came the Enphase TRUNK Cable, mounted with stainless steel clips to the rails. Then the panels were added, the micros were plugged in to the trunk cable and the panel leads connected to the micros. One end of the trunk cable is sealed with a weather tight cap, and the other goes to a weatherproof junction box (white) to transition to standard exterior rated 12-3 with ground romex. The romex connects to a breaker box with a 20 amp 2 pole breaker for each string of 16 and 1 string of 14 panels. Then, the entire array is nicely dressed using tie wraps so that all the wiring is suspended between the panels and the bottom of the rails to keep it from whipping in the wind or getting snagged by anything.



Power panel mounted below array

Power Panel beneath the array, mounted to the side of the hay barn.

Here’s the power panel. Public Utility Commission in Ohio says any array over 6Kw must be metered by a UTILITY GRADE meter. Got one on Ebay for $35. Breaker box on left contains the 3 solar breakers. That feeds through the meter to the master breaker box on the right. Master breaker box connects to the utility grid via a buried conduit over to the other barn that had power in it already. Below the utility grade meter is the Enphase ENVOY monitoring unit that ties all this to the internet so George can watch things from his home computer. He can share a link with his friends as well. I’ll post this link soon as I get it from George! The Utility voltage here is rather high – close to the limits for most inverters, at 254Vac. This causes a few of the inverters to occasionally shut down (to protect themselves). I’ll be looking into this further on my next visit to see how we might correct this…


Almost finished array by Cinci Home Solar

Almost finished DIY solar array accomplished with a little help from Cinci Home Solar!

Here’s the finished array. Still need to trim the excess rail length at the bottoms. If you look close, you might just spot some mis-alignment within the array. George got 2 pallets of panels. Same part number, same vendor, but one pallet was 1/2 inch shorter on the long side (out of spec…). We didn’t catch this till 5 were mounted in the top row. George, being a prudent and thrifty fellow, called the panel supplier and negotiated a compromise that didn’t require a return of the panels. The size only affects the esthetics slightly, and a cost reduction is pending!  The Enphase ENVOY normally communicates over the power lines, but there’s a half mile of them back to the house and that’s too far for it to work, so I added an Engenius EOC-1650 at the house as an access point, and atop the array as a client/bridge. It works great – with 100% signal integrity, and also provides WIFI to his customers and visitors! The EOC-1650 is that little white gadget at the top right of the array.

POLLEN can reduce your solar output!

I’ve not been on the roof to clean my panels since I put them up last July. This past Spring, I had to wash my car twice to get rid of a sticky yellow buildup of pollen, but it didn’t occur to me that this same pollen could be on my panels. Imagine my surprise when I went up there and found the entire surface of all the panels to be COVERED with pollen – it was like 150 grit sandpaper! This most certainly caused the light to diffuse and reduce the amount of solar energy impacting directly on the solar panel glass!! About 15 minutes with a bucket of soapy water and a cleaner/squeegee made them good as new. Solar output increased immediately by about 5% compared the the day before (both days equally sunny with no clouds). Moral of the story: if you want max power, you need clean panels! If you can reach them with a stream of water from a hose, do this regularly to prevent buildup of dirt and pollen!